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Abstract

We present searches for quark-lepton compositeness and a heavyW 0 boson at

high electron-neutrino transverse mass. We use �110 pb�1 of data collected

in p�p collisions at
p
s = 1.8 TeV by the CDF collaboration during 1992{

95. The data are consistent with standard model expectations. Limits are

set on the quark-lepton compositeness scale � and the ratio of partial cross

sections �(W 0 ! e�)=�(W ! e�). The cross section ratio is used to obtain

a lower limit on the mass of a W 0 boson with standard model couplings. We

exclude � < 2:81 TeV and a W 0 boson with mass below 754 GeV/c2 at the

95% con�dence level. We combine the W 0 mass limit with our previously

published limit obtained using the muon channel, to exclude a W 0 boson with

mass below 786 GeV/c2 at the 95% con�dence level.

Typeset using REVTEX
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The standard model (SM) gives a good description of nature in terms of the fundamental
fermions and their interactions via gauge bosons. However, the SM is not expected to be a
complete theory. For example, it does not explain the number of fermion families or their
mass hierarchy. It also does not provide a uni�ed description of all gauge symmetries. Com-
positeness models postulate constituents of the SM fermions and new strong dynamics that
bind these constituents [1]. Other extensions of the SM postulate larger gauge groups and
therefore new forces associated with additional charged gauge bosons, which we generically
call W 0. For instance, the left-right symmetric model [2] expands the SU(2)L � U(1) elec-
troweak group to SU(2)L � SU(2)R � U(1), predicting an additional right-handed charged
gauge boson.

At center-of-mass energies much smaller than the compositeness energy scale �, in-
teractions between composite quarks and/or leptons have been parameterized by e�ective
four-fermion contact interactions [1]. Atomic parity violation experiments have set strin-
gent, though model-dependent limits on quark-lepton compositeness in the neutral current
channel [3]. Direct searches have set limits on � in the range 2.5{6.1 TeV [4{6] in a broad
class of neutral current models. In this Letter, we present the �rst results of a search for
compositeness in the charged current channel (q�q0e�) using the e� �nal state.

The e� �nal state is also sensitive to the direct production and decay of a W 0 boson.
Previous indirect searches based on � decay, theKL�KS mass di�erence, neutrinoless double
beta decay, and studies of b particles have resulted in stringent model-dependent limits on
possible W 0 bosons [7]. Direct searches in various decay modes have produced lower limits
on the W 0 mass, mW 0. The best limit of mW 0 > 720 GeV/c2 in the W 0 ! e� channel [8]
assumes a light and stable neutrino, standard model couplings for the W 0 to fermions, and
suppressed W 0 ! WZ decays, as in extended gauge models [9]. In this Letter, we set
upper limits on the ratio of partial cross sections �(W 0 ! e�)=�(W ! e�) under the same
assumptions. We use the latter to obtain the most stringent lower limit on mW 0. We also
present the combined W 0 mass limit with our previously published limit obtained using the
muon channel [10].

We use �110 pb�1 of data collected in p�p collisions at
p
s = 1:8 TeV by the Collider

Detector at Fermilab [11] during 1992{95. The detector includes a tracking system im-
mersed in a 1.4 T magnetic �eld, scintillator-based sampling electromagnetic and hadronic
calorimeters, and a muon detector. For this analysis, electron candidates are accepted in the
pseudorapidity range 0:05 < j�j < 1:0, where � = �log tan(�=2), and � is the polar angle
with respect to the beam axis. Electrons detected near the �ducial edges of the calorimeter
are removed to ensure uniform calorimeter response. We use a combination of electron and
neutrino triggers to obtain an eÆciency exceeding 99% for the high transverse mass e� �nal
states that pass our o�ine selection criteria.

After o�ine reconstruction, the electromagnetic calorimeter cluster with the highest
transverse energy (ET � E sin �) in the event must satisfy these requirements: (i) the elec-
tron must deposit most [12] of its energy in the electromagnetic calorimeter, (ii) a track in
the central drift chamber must match the calorimeter cluster in position, (iii) the electron
must be isolated in a cone of radius R � p��2 +��2 = 0:4, such that the fractional excess

transverse energy in the cone,
E
tot

T
(R=0:4)�Ee

T

Ee

T

< 0:1, where Etot

T
and Ee

T
are the total and

electron transverse energies respectively. The kinematic cuts used to de�ne the data sample

5



are Ee

T
> 30 GeV, the transverse momentum (pT ) of the associated track pe

T
> 13 GeV/c,

the missing transverse energy 6ET > 30 GeV, and the electron-neutrino transverse mass

mT (e�) > 50 GeV/c2, where mT (e�) =
q
2 Ee

T
6ET (1� cos �e�), and �e� is the azimuthal

angle between the electron and the 6ET direction. The neutrino transverse momentum is
identi�ed with 6ET by requiring transverse momentum balance in the event. Electron iden-
ti�cation cuts based on E=p (ratio of calorimeter energy to matched track momentum) and
calorimeter energy pro�les, which are imposed for Ee

T
< 50 GeV to suppress jet misidenti�-

cation backgrounds, are released for Ee

T
> 50 GeV to ensure maximum signal eÆciency. A

total of 31,436 events pass our selection criteria.
We use the PYTHIA [13] program to compute the compositeness and W 0 signal pro-

cesses. The detector response is simulated using a parameterized Monte Carlo program.
The electromagnetic calorimeter sampling term is derived from test beam data. The under-
lying event contribution to the electron energy resolution is derived from W ! e� collider
data. The constant term in the electromagnetic resolution is tuned to reproduce the ob-
served width of the Z ! ee mass peak. The electromagnetic energy scale is set so that
the reconstructed Z boson mass agrees with the world-average Z mass [14]. The hadronic
response and resolution are tuned by studying the pT balance in Z ! ee events.

In this analysis we normalize the number of SM background Monte Carlo events after
detector simulation to the large inclusiveW boson sample in the data. Thus we are analysing
the shape of the e� transverse mass distribution, and are insensitive to the uncertainty in
the integrated luminosity of the data and to the overall eÆciency. The eÆciency of the
additional electron identi�cation cuts applied for Ee

T
< 50 GeV is determined using Z ! ee

data where one of the electrons is tagged. The second electron then provides an unbiased
sample with which to measure the eÆciencies. Background subtraction is performed using
the sidebands of the Z boson mass distribution. The combined eÆciency of these additional
cuts is (95.8�0.3)%, relative to the full eÆciency at high Ee

T
.

The most important sources of misidenti�cation background to p�p ! e� + X are (i)
QCD multijet events, where a jet is misidenti�ed as an electron and there is suÆcient energy
mismeasurement to create signi�cant 6ET , and (ii) Z ! ee events where one electron is lost
or misreconstructed. The electromagnetic energy in a jet which has been misidenti�ed as
an electron is likely to be non-isolated. We select a representative sample of misidenti�ed
electrons by making the electron identi�cation cuts on the base sample without the isolation
cut, and then selecting non-isolated candidates. The relative normalization of this sample to
the jet background in the signal sample is obtained from a \pure-jet" sample. The \pure-jet"
sample is obtained in the same way as the signal sample except 6ET< 10 GeV, which excludes
almost all W events. This technique assumes that the isolation for a jet is independent of
6ET . The systematic uncertainty of 30% on the jet misidentication background is estimated
by studying the correlation between isolation and 6ET . The Z ! ee background is estimated
using a Monte Carlo sample of Z ! ee events, passed through a full detector simulation and
reconstructed like the data. The sytematic uncertainty of 23% on the Z ! ee background
is estimated by varying the detector response to electrons near the �ducial edges of the
calorimeter. Other systematic uncertainties, indicated in Table II, are derived by varying
the parameters in the Monte Carlo simulation. The uncertainty due to parton distribution
functions is taken to be identical with our published W 0 ! �� analysis [10].
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TABLE I. The observed number of events and the total expected number of events from SM

and detector background sources, in transverse mass bins.

mT bin (GeV/c2) Nobserved Nexpected

150-200 70 62.2�8.5
200-250 18 18.3�3.4
250-300 5 4.01�0.44
300-350 2 1.61�0.18
350-400 0 0.72�0.08
400-500 1 0.49�0.06
500-600 0 0.11�0.02
600-1000 0 0.05�0.01

Other high pT processes also contribute to e� �nal states. Using PYTHIA, we evaluate
the following background processes, W ! e� (dominant), W ! �� ! e�X, t�t ! e�X,
WW ! e�X,WZ ! e�X, ZZ ! e�X and �=Z ! �� ! e�X. We pass these Monte Carlo
events through the parameterized detector simulation to estimate their contribution. These
physics backgrounds dominate over the misidenti�cation backgrounds at high e� transverse
mass, due to the presence of real neutrino(s) producing large 6ET . For example, the jet
and Z ! ee misidenti�cation background fractions amount to 25% and 3% respectively for
mT (e�) > 150 GeV/c2.

TABLE II. Systematic uncertainties on the SM background and the signal due to the parton

distribution functions (PDFs), the K-factor, and the detector model.

SM Background (%) Signal (%)

PDFs 10 10

K-factor 4 4

hadronic resolution 0.1 2

vertex z width 0.5 1.8

hadronic scale 0.2 1.6

EM resolution 0.1 1.5

electron eÆciency 1.0 1.0

EM scale 0.2 0.9

total 11 12

Figure 1 shows the transverse mass distribution of the data events normalized to the bin
width. Also shown is the expectation based on SM processes and detector backgrounds. We
apply a mass-dependent K-factor (de�ned as the ratio of the next-to-next-to leading order
(NNLO) and the leading-order (LO) Drell-Yan cross section calculations from Ref. [15]) to
the LO PYTHIA calculation. The K-factor varies between 1.24 at 80 GeV/c2 and 1.65 at
800 GeV/c2. The e�ects of the detector acceptance and response have been folded into the
theoretical prediction. Table I shows the expected and the observed number of events in the
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high transverse mass bins. There is good agreement between the data and the expectation.
Also shown are all backgrounds excluding the dominant SM W ! e� process, and the
expectation of the compositeness model with � = 2 TeV.

To set a limit on the compositeness scale �, we generate Monte Carlo events for the
compositeness process using PYTHIA, corrected with the K-factor. We perform a Bayesian
analysis [14] of the shape of the mT distribution of events. The expected number of events
in the kth transverse mass bin is denoted by Nk

� = bk + L�k�k�, where �k� is the predicted
cross section for a given scale �, and �k and bk denote the total acceptance and remaining
backgrounds in the kth bin. The prediction for the number of events, including all back-
grounds, is normalized to the observed number of events for mT (e�) < 150 GeV/c2. Given
the data (D), we compute the posterior probability distribution for � according to

P (�jD) =
1

A

Z
db d�

nY
k=1

2
4e�Nk

�Nk

�
N
k
o

Nk
o
!

P (bk; �k)

3
5P (�):

Nk

o
denotes the observed number of events. We take the prior distribution P (bk; �k) of the

nuisance parameters b and � to be Gaussian with the r.m.s. given by their total uncertainties.
The bin-to-bin correlations in the uncertainty on the acceptance and background are taken
into account. We make the conventional choice for the prior distribution P (�) to be uniform
in 1/�2. The 95% C.L. lower limit is de�ned by

R
1

� P (�0jD)d�0 = 0:95, yielding � > 2:81
TeV. The expected limit, obtained when the observed number of events is set equal to the
expected number, is � > 2:70 TeV. Varying the choice of the prior distribution P (�) changes
the limit by 10%.

To set a limit on the mass of a W 0 boson, we compute the Poisson probability for the
observed number of events given Nexpected = Nbackground + NW 0. The Poisson probability
is computed separately in three search windows: 0:5MW 0 < mT < 0:65MW 0, 0:65MW 0 <
mT < 0:8MW 0 and 0:8MW 0 < mT < 1:1MW 0, and then the probabilities are combined.
The use of three windows allows us to exploit the di�erence in the shape of the W 0 signal
and background mT distributions. Uncertainties in the backgrounds and signal acceptance
are incorporated by convoluting the probability P (NW 0) over Gaussian uctuations in these
parameters, taking correlations across bins into account. The 95% C.L. upper limit on the

number of W 0 signal events, N95
W 0, is de�ned by

R N95

W 0

0 P (NW 0)d(NW 0) = 0:95. The limit N95
W 0

may be expressed as a 95% C.L. limit on the ratio �B(W 0 ! e�)=�B(W ! e�) using 
�B(W 0 ! e�)

�B(W ! e�)

!
95

=
N95
W 0AW

AW 0NW

where NW is the observed number of SM W events and AW 0(AW ) is the total acceptance for
W 0 ! e� (W ! e�) decays. The 95% C.L. upper limit on �B(W 0 ! e�)=�B(W ! e�) is
plotted as a function of MW 0 in Fig. 2 together with the theory curve from PYTHIA 6.129,
assuming standard model couplings and including the K-factor. From the intersection of
the two curves, a W 0 boson with mass mW 0 < 754 GeV/c2 is excluded at 95% C.L. The
expected limit in this case is 748 GeV/c2. We combine this result with our previously
published result on a W 0 boson using the �� �nal state [10]. Taking the PDF uncertainty
to be fully correlated between the two analyses and with the same model assumptions, we
obtain the combined limit excluding mW 0 < 786 GeV/c2 at the 95% C.L.
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In conclusion, we �nd no signi�cant deviation between the measured e� transverse mass
distribution at high transverse mass and the SM prediction. We have used the data to
exclude the quark-lepton compositeness scale � < 2:81 TeV, in the context of an e�ective
contact interaction. We set limits on the ratio of the cross section times branching ratio to
e� of a W 0 boson to a standard model W boson. We use the latter to exclude a W 0 boson
with SM couplings and mass mW 0 < 754 GeV/c2. Combining with our muon channel result,
we exclude mW 0 < 786 GeV/c2 at the 95% C.L.
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FIG. 1. The event yield from the data as a function of the e� transverse mass, normalized to

the bin width. Also shown are the SM prediction including backgrounds, all backgrounds excluding

the dominant SM W ! e� process, and the prediction of the compositeness process with energy

scale � = 2 TeV. The simulation of the physics processes includes the e�ects of detector acceptance

and response.
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FIG. 2. The 95% C.L. upper limit on the ratio of partial cross sections �(W 0 ! `�)=�(W ! `�),

for the e data and the combined e + � data. Also shown is the SM prediction for this ratio, and

the mW 0 limits obtained from the intersection of the experimental and theory curves.
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